Markscheme

May 2018

Further mathematics

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {™ }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2018". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award MO followed by A1, as \boldsymbol{A} mark(s) depend on the preceding M mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working. However, if further working indicates a lack of mathematical understanding do not award the final $\boldsymbol{A 1}$. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	5.65685... (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value ($e g \sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A} \mathbf{1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

Note: In question 1, accept answers that round correctly to 2 significant figures.

1. (a) $a X+b Y \sim \mathrm{~N}\left(a \mu_{1}+b \mu_{2}, a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}\right)$

Note: A1 for N and the mean, A1 for the variance.
(b) (i) $X_{1}+Y_{1} \sim \mathrm{~N}(5,34)$
(A1)(A1)
$\Rightarrow \mathrm{P}\left(X_{1}+Y_{1}<11\right)=0.848$
(ii) $3 X_{1}+4 Y_{1} \sim \mathrm{~N}(9+8,9 \times 9+16 \times 25)$
(A1)(M1)(A1)
Note: Award (A1) for correct expectation, (M1)(A1) for correct variance.
$\sim \mathrm{N}(17,481)$
$\Rightarrow \mathrm{P}\left(3 X_{1}+4 Y_{1}>15\right)=0.536$
(iii) $X_{1}+X_{2}+Y_{1}+Y_{2}+Y_{3}+Y_{4} \sim \mathrm{~N}(6+8,2 \times 9+4 \times 25)$
$\sim \mathrm{N}(14,118)$
$\Rightarrow \mathrm{P}\left(X_{1}+X_{2}+Y_{1}+Y_{2}+Y_{3}+Y_{4}<30\right)=0.930$
(c) consider $\bar{X}-\bar{Y}$
$\mathrm{E}(\bar{X}-\bar{Y})=3-2=1$
$\operatorname{Var}(\bar{X}-\bar{Y})=\frac{9}{2}+\frac{25}{4}(=10.75)$
(M1)A1
$\Rightarrow \mathrm{P}(\bar{X}-\bar{Y}>0)=0.620$

A1
2. (a) Euler's method with step length $h=0.1$ to find y when $x=0.4$

x	y	$\frac{\mathrm{~d} y}{\mathrm{~d} x}$	$h \frac{\mathrm{~d} y}{\mathrm{~d} x}$	$y+h \frac{\mathrm{~d} y}{\mathrm{~d} x}$
0	2	5	0.5	2.5
0.1	2.5	4.2	0.42	2.92
0.2	2.92	3.7755	0.37755	3.29755
0.3	3.29755	3.49923	0.349923	3.64747
0.4	3.64747			

Note: Accept 3 significant figures in the table.
first line of table
(M1)(A1)
line 2
line 3
hence $y=3.65$
Note: Accept any answer that rounds to 3.65.
(b) (i) $\quad(5 x+y) \frac{\mathrm{d} y}{\mathrm{~d} x}=x+5 y$

$$
\left(5+\frac{\mathrm{d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+(5 x+y) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

M1A1A1

Note: Award M1 for a valid attempt to differentiate, A1 for LHS, A1 for RHS.

$$
\begin{aligned}
& (5 x+y) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 \frac{\mathrm{~d} y}{\mathrm{~d} x}-\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} \\
& (5 x+y) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1-\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}
\end{aligned}
$$

(ii) $\quad(5 x+y) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1-\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}$

$$
\begin{aligned}
& \left(5+\frac{\mathrm{d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(5 x+y) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=-2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right) \\
& (5 x+y) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=-2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)-5 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right) \\
& (5 x+y) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=-5 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-3\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)
\end{aligned}
$$

Question 2 continued
(iii) when $x=0 \quad y=2$

$$
\begin{aligned}
& \text { when } x=0 \frac{\mathrm{~d} y}{\mathrm{~d} x}=5 \\
& \text { when } x=0 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-12
\end{aligned}
$$

when $x=0 \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=120$
Note: Allow follow through from incorrect values of derivatives.

$$
y=2+5 x-6 x^{2}+20 x^{3}
$$

3. (a)

A2

(b) (i) two vertices are of odd degree A1
to have an Eulerian circuit it must have all vertices of even degree R1 hence no Eulerian circuit, but an Eulerian trail
(ii) it allows Pauline to go through every door once (provided she starts in room B or room E)
and she cannot return to the room in which she started
(c) (i) for example: $\mathrm{A} \rightarrow \mathrm{F} \rightarrow \mathrm{E} \rightarrow \mathrm{D} \rightarrow \mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$

Note: Award A1 if the cycle does not return to the start vertex.
(ii) she can visit every room once without repeating and return to the start
(d) $\mathrm{Z} \rightarrow \mathrm{V} \rightarrow \mathrm{Y} \rightarrow \mathrm{X} \rightarrow \mathrm{U} \rightarrow \mathrm{W} \rightarrow \mathrm{Z}$ A1
$6+4+9+7+10+10=46$

Question 3 continued
(e) attempt to find the minimal spanning tree

DY
NW
UX
KY
Note: Award A1 if one error made.

Note: Accept correct drawing of minimal spanning tree.
weight of minimal spanning tree $=4+5+7+9=25$
since Z is removed, we add on VZ and ZY
hence lower bound for route is $25+13=38$
4. (a) (i)

AZ
(ii)

A2
continued...

Question 4 continued
(iii)

A2
[6 marks]
(b) (i) the slope is the same everywhere
(ii) all points that have the same x coordinate have the same slope
(c) this is where a straight line appears on the slope field There is no other straight line, all the other solutions are curves
(d) given $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)$, the isoclines are $f(x, y)=k$
here the isoclines are $y=k x$ (or $x=k y$)
any two differential equations of the correct form, for example
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k y}{x}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{k x}{y}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sin \left(\frac{y}{x}\right), \frac{\mathrm{d} y}{\mathrm{~d} x}=\sin \left(\frac{x}{y}\right)$
5. (a) $A=4 \int y \mathrm{~d} x$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow$
$y=\frac{b \sqrt{a^{2}-x^{2}}}{a}$
let $x=a \cos \theta \Rightarrow y=b \sin \theta$
$\frac{d x}{d \theta}=-a \sin \theta$
when $x=0, \theta=\frac{\pi}{2}$. When $x=a, \theta=0$
$\Rightarrow A=4 \int_{\frac{\pi}{2}}^{0} b \sin \theta(-a \sin \theta) \mathrm{d} \theta$
$\Rightarrow A=-4 a b \int_{\frac{\pi}{2}}^{0} \sin ^{2} \theta \mathrm{~d} \theta$
$\Rightarrow A=-2 a b \int_{\frac{\pi}{2}}^{0}(1-\cos 2 \theta) \mathrm{d} \theta$
$\Rightarrow A=-2 a b\left[\theta-\frac{\sin 2 \theta}{2}\right]_{\frac{\pi}{2}}^{0}$
$\Rightarrow A=-2 a b\left[0-0-\left(\frac{\pi}{2}-0\right)\right]$
$\Rightarrow A=\pi a b$
(b) (i) $b=2$
hence $2 \pi a=8 \pi \Rightarrow a=4$
A1
hence major axis lies along the x-axis A1
(ii) $b^{2}=a^{2}\left(1-e^{2}\right)$
(M1)

$$
4=16\left(1-e^{2}\right) \Rightarrow e=\frac{\sqrt{3}}{2}
$$

(iii) coordinates of foci are $(\pm a e, 0)=(2 \sqrt{3}, 0),(-2 \sqrt{3}, 0)$
(iv) equations of directrices are $x= \pm \frac{a}{e}=\frac{8}{\sqrt{3}},-\frac{8}{\sqrt{3}}$

Question 5 continued
(c) $\quad a=\frac{3}{2}, b=\frac{5}{2}$
(A1)
hence equation is $\frac{4}{9}(x-2)^{2}+\frac{4}{25}(y-1)^{2}=1$
M1A1
[3 marks]

Total [20 marks]

6. (a) $a+e+20=a(\bmod 100)$
$e=-20(\bmod 100)$
$e=80$
(b) $a+a^{-1}+20=80(\bmod 100)$
inverse of a is $60-a(\bmod 100)$
(c) 30 and 80
(d) $\quad a \circ(b * c)=a \circ(b+c+20)(\bmod 100)$
$=a+(b+c+20)-20(\bmod 100)$
$=a+b+c(\bmod 100)$
A1
$(a \circ b) *(a \circ c)=(a+b-20) *(a+c-20)(\bmod 100)$
M1
$=a+b-20+a+c-20+20(\bmod 100)$
$=2 a+b+c-20(\bmod 100)$
A1
hence we have shown that $a \circ(b * c) \neq(a \circ b) *(a \circ c) \quad \boldsymbol{R 1}$
hence the operation \circ is not distributive over $*$
AG
Note: Accept a counterexample.
[5 marks]
(e) $\{0,5,10,15 \ldots\} \quad \boldsymbol{A 1}$
\{1,4,11,14...\} A1
$\{2,3,12,13 \ldots\} \quad$ A1
\{6,9,16,19...\} A1
$\{7,8,17,18 \ldots\} \quad$ A1
[5 marks]
(f) for example 10 and 50,20 and 40,0 and $60 \ldots$

A2
7. (a) (i)

$\sin \mathrm{B}=\frac{h}{c}$ and $\sin \mathrm{C}=\frac{h}{b}$
hence $h=c \sin \mathrm{~B}=b \sin \mathrm{C}$
by dropping a perpendicular from B, in exactly the same way we find $c \sin \mathrm{~A}=a \sin \mathrm{C}$
hence $\frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}$
(ii) \quad area $=\frac{1}{2} a h$
$=\frac{1}{2} a b \sin \mathrm{C}$
(iii)

since the angle at the centre of circle is twice the angle at the circumference $\sin \mathrm{A}=\frac{a}{2 R}$
hence $\frac{a}{\sin \mathrm{~A}}=2 R$ and therefore $\frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}=2 R$
continued...

Question 7 continued
(iv) area of the triangle is $\frac{1}{2} a b \sin \mathrm{C}$
since $\sin \mathrm{C}=\frac{c}{2 R}$
area of the triangle is $\frac{1}{2} a b \frac{c}{2 R}=\frac{a b c}{4 R}$
(b) (i) area of the triangle is $\frac{\pi R^{2}}{6}$
(M1)A1
$(\mathrm{DE})^{2}+(\mathrm{EF})^{2}=4 R^{2}$
$(\mathrm{DE})^{2}=4 R^{2}-(\mathrm{EF})^{2}$
$\frac{1}{2}(\mathrm{DE})(\mathrm{EF})=\frac{\pi R^{2}}{6} \Rightarrow(\mathrm{EF})=\frac{\pi R^{2}}{3(\mathrm{DE})}$
M1A1
$(\mathrm{DE})^{2}=4 R^{2}-\frac{\pi^{2} R^{4}}{9(\mathrm{DE})^{2}}$
A1
$9(\mathrm{DE})^{4}-36(\mathrm{DE})^{2} R^{2}+\pi^{2} R^{4}=0$
A1
$(\mathrm{DE})^{2}=\frac{36 R^{2} \pm \sqrt{1296 R^{4}-36 \pi^{2} R^{4}}}{18}$
$(\mathrm{DE})^{2}=\frac{36 R^{2} \pm 6 R^{2} \sqrt{36-\pi^{2}}}{18}\left(=\frac{6 R^{2} \pm R^{2} \sqrt{36-\pi^{2}}}{3}\right)$
(ii)

A1A1
[11 marks]
continued...

Question 7 continued
(c)

$\hat{\mathrm{A}}+\hat{\mathrm{C}}=180^{\circ}$ (cyclic quadrilateral) R1
however $\hat{\mathrm{A}}=\hat{\mathrm{C}}$ (ABCD is a parallelogram)
similarly $\hat{\mathrm{B}}=\hat{\mathrm{D}}=90^{\circ}$
hence ABCD is a rectangle

Total [24 marks]

8.

(a) (i) $\mathrm{P}(X=x)=p q^{x-1}$ for $x=1,2 \ldots$

$$
\begin{array}{ll}
G(t)=\sum_{x=1}^{\infty} t^{x} p q^{x-1} & \text { M1 } \\
=p t \sum_{x=1}^{\infty}(t q)^{x-1} & \text { A1 } \\
=p t\left(1+t q+(t q)^{2} \ldots\right) & \\
=\frac{p t}{1-t q} &
\end{array}
$$

(ii) $\quad G^{\prime}(t)=\frac{(1-t q) p-p t(-q)}{(1-t q)^{2}}$

$$
\mathrm{E}(X)=G^{\prime}(1)
$$

$$
=\frac{(1-q) p+p q}{(1-q)^{2}}
$$

$$
=\frac{1}{p}
$$

Question 8 continued
(b) after 6 serves (3 serves each) we have $A B B A A B$
A serves B serves
3 wins $\quad 0$ losses $\quad p_{1}={ }^{3} C_{3} p_{A}^{3} q_{A}^{0}{ }^{3} C_{0} p_{B}^{3} q_{B}^{0}$
2 wins $\quad 1$ loss $\quad p_{2}={ }^{3} C_{2} p_{A}^{2} q_{A}^{1{ }^{3}} C_{1} p_{B}^{2} q_{B}^{1} \quad$ A1
1 win 2 losses $p_{3}={ }^{3} C_{1} p_{A}^{1} q_{A}^{23} C_{2} p_{B}^{1} q_{B}^{2} \quad$ A1
0 wins $\quad 3$ losses $p_{4}={ }^{3} C_{0} p_{A}^{0} q_{A}^{3{ }^{3}} C_{3} p_{B}^{0} q_{B}^{3} \quad$ A1
since ${ }^{3} C_{0}={ }^{3} C_{3},{ }^{3} C_{1}={ }^{3} C_{2}$
$\sum_{x=0}^{x=3}\binom{3}{x}^{2}\left(p_{A}\right)^{x}\left(p_{B}\right)^{x}\left(q_{A}\right)^{3-x}\left(q_{B}\right)^{3-x}$
(c) for $N=2$ serves are B, A respectively
$\mathrm{P}(N=2)=\mathrm{P}(B$ wins twice $)+\mathrm{P}(A$ wins twice $)$
$=0.6 \times 0.3+0.4 \times 0.7$
$=0.46$
(d) for $M=\frac{1}{2} N$
$\mathrm{P}(M=1)=\mathrm{P}(N=2)=p_{M}$
$\mathrm{P}(M=2)=\mathrm{P}(N=4)$
$=\mathrm{P}\binom{$ game does not end after }{ first two serves }$\times \mathrm{P}\binom{$ game ends after }{ next two serves }$=\left(1-p_{M}\right) p_{M}$
similarly $\mathrm{P}(M=3)=\left(1-p_{M}\right)^{2} p_{M}$
hence $\mathrm{P}(M=r)=\left(1-p_{M}\right)^{r-1} p_{M}$A1
hence M has a geometric distribution AG
$\mathrm{P}(M=1)=\mathrm{P}(N=2)=p_{M}=0.46$
A1
hence $\mathrm{E}(M)=\frac{1}{p}=\frac{1}{0.46}=2.174$
$\mathrm{E}(N)=\mathrm{E}(2 M)=2 \mathrm{E}(M)$
$=4.35$

A1
[7 marks]

